K-DUCER Modbus TCP Programmer Manual

Note: we now have a C# library and Siemens S7 function block library that abstract
away all Modbus TCP implementation details from the user.

If you are using C# please refer to:
https://kolver.com/us/blog-detail/kolver-s-new-nuget-net-library and
https://www.nuget.org/packages/Kolver.Kducer

If you are using Siemens S7 PLCs:
https://kolver.com/us/blog-detail/siemens-s7-plc-integration-now-available
https://kolver.com/upl/Siemens%20S7%20library %20and %20example.zip

We also have a URCap for Universal Robots:

https://kolver.com/us/blog-detail/universal-robots-kolver-introducing-our-new-urcap-
plugin
https://kolver.com/upl/URCAP-KDUCER.zip
Resource Packet Contents
The KDUCER ModBus TCP resources packet contains the following files and documents:
e KDucer_Modbus_Map_Rev29.xlsx: table of all K-DUCER MODBUS data and
addresses
e AllenBradley PLC MODBUS resources: example project integrating the K-
DUCER with a Micro820 PLC via MODBUS, plus guides for implementing a
MODBUS TCP client with CompactLogix and ControlLogix PLCs
e Siemens PLC MODBUS resources: K-DUCER function block library for S7 PLCs
and example project using it
e Script examples: various examples in python and powershell demonstrating the
functionality described here

Table of Contents
Usage

K-DUCER MODBUS map
Writing values to HOLDING REGISTERS

Method 1: modify settings in volatile memory only
Method 2: modify settings in volatile and permanent memory

Special holding registers
General implementation guidelines and tips
Typical program loops
MODBUS TCP code examples and literature

O© NN O i bW W DN

KOLVER

e cagy aolatie

https://kolver.com/us/blog-detail/kolver-s-new-nuget-net-library
https://www.nuget.org/packages/Kolver.Kducer
https://kolver.com/us/blog-detail/siemens-s7-plc-integration-now-available
https://kolver.com/us/blog-detail/universal-robots-kolver-introducing-our-new-urcap-plugin
https://kolver.com/us/blog-detail/universal-robots-kolver-introducing-our-new-urcap-plugin

Introduction

The recommended way to interface with the K-DUCER unit is through the MODBUS
TCP protocol on the ethernet port (CN5).

MODBUS communication protocol provides a Client-Server interface between devices
connected on an ethernet TCP/IP network.

The MODBUS protocol specifications are open source and freely available online at
modbus.org, however most automation engineers will not need to worry about the
implementation details because MODBUS is already supported and implemented by
most ethernet-capable PLCs and industrial PCs.

Usage

Enable MODBUS TCP via the General Settings menu > Communication Protocol. The
K-DUCER should be connected to the same LAN network as the client device, and it
must be left in the main operation screen, outside of any configuration menu.

Note: the K-DUCER will respond to the ping command over TCP/IP when configured
correctly.

The K-DUCER implements a MODBUS server, which responds to MODBUS requests.
The automation device (PLC, industrial PC, ...) must implement a MODBUS client,
which sends MODBUS requests to the server (K-DUCER).

The MODBUS server (K-DUCER) only responds to requests and never initiates any
communication independently, in accordance with the MODBUS protocol.

A MODBUS request is simply a message requesting to read or write one or more bits or
bytes of data at a particular address. The list of all accessible data and their addresses is
called the MODBUS map.

MODBUS requests are categorized into function codes. Different function codes are used
to access different types of data (bits-coils or byes-registers). There are also convenience
function codes used to access a range of multiple data addresses at once.

All program, sequence, and general settings can be modified via MODBUS requests.
However, Kolver recommends pre-configuring the K-DUCER programs and settings
via the K-Expand software, via touch screen, or via kdu backup file from USB, and only
utilizing the MODBUS TCP protocol for screwdriver control, program switching, and
data acquisition.

K-DUCER MODBUS map

COILS
(bits)

INPUT
REGISTERS
(bytes)

HOLDING
REGISTERS
(bytes)

DISCRETE
INPUTS

The full MODBUS map can be found in the attached document

The K-DUCER, MODBUS data is organized and accessed as follows:

Contents

A mirror copy of the CN3 output pins 23 to
43 represented as bits;

Writeable coils mimicking the functionality
of CN3 input pins 13 to 20, providing
screwdriver motor control capability

Data related to the last screwdriving results
including closing torque and angle;
torque/angle charts; current screwdriving
state and errors; connected screwdriver info
Current selected program;

All program settings;

All sequence setting;

Current selected sequence;

General settings;

Remote programming mode enter/exit flag;

A mirror copy of the CN3 input pins 1 to 20
represented as bits

KDucer_Modbus_Map_Rev29.xIsx.

Writing values to HOLDING REGISTERS

Access

Read/
Write

Read
only

Read/
Write

Read
only

Associated
MODBUS

function codes
01 (read coils)

05 (write single
coil)

15 (write
multiple coils)
04 (read input
registers)

03 (read
holding
registers)

06 (write single
register)

16 (write
multiple
registers)

02 (read
discrete inputs)

Starting with KDU firmware version 38* (i.e., mainboard versions G.00.38, H.00.38,

M.00.38 when in the General Settings => Info button screen), there are two ways to write
values to the Modbus holding registers.
*Kolver can upgrade any KDU-1A controller to firmware version v38 for free

KOLVER

e cagy aolatie

Method 1: modify settings in volatile memory only

This is the recommended method for all applications that do not require retaining
values written to holding register after a powering off the KDU controller.

Target applications

- applications where the operator is not allowed to modify the program/sequence
values directly on the KDU controller

- applications where the KDU is reprogrammed via Modbus when the application
tirst boots up

- applications that provide an HMI to re-program the KDU controller that is
intended to substitute the touch screen interface on the KDU controller

In these types of applications, it is not important to retain the program/sequence
settings upon rebooting the KDU, because the application will re-write the KDU
configuration when it boots.

The advantage of this method over method 2 is that it is about 10x faster to modify one
or more parameters, by virtue of not having to save the new parameters onto
permanent memory.

The disadvantage is that the settings are lost when the operator enters the KDU
configuration menu, or when rebooting the controller. In both cases the settings in
permanent memory are loaded.

Usage

Simply write the desired values via Modbus function codes 6 or 16.

As soon as a write register command is received, the KDU will temporarily enter the
“REMOTE PROGRAMMING.. PLEASE WAIT” screen.

The KDU will remain in this screen for 200 milliseconds. The 200ms timer is reset if
another write register command is received while in this screen.

When the timer expires, the modified register values will be applied and the KDU will
return to the main screen.

Method 2: modify settings in volatile and permanent memory

Method 2 is used to save settings to permanent memory (retained when the controller is
powered off) and is the only method available with KDU firmware version 37 and
prior.

Target applications

Any application where it is required that the KDU retains the values written to the
holding register when the operator enters the configuration menu or after rebooting the
controller.

In both of these cases, the application could still use method 1 as long as the values are
re-written after the power-off event or the user configuration event.

Usage

e Write the value “1” to address 7790 to enter “Remote Programming Mode” using
MODBUS function code 06 “write single register”
o The controller will display “REMOTE PROGRAMMING... PLEASE
WAIT” indefinitely
e Change the desired holding register values using MODBUS function codes 06 or
16
e Write the value “2” to address 7790 to apply the changes and exit “Remote
Programming Mode”
o The controller will exit the “/REMOTE PROGRAMMING” screen and
return to the main screen
o This step takes about 2 seconds
e Itis also possible to write value “0” to exit remote programming mode without
applying any of the changes (the holding register values are restored in this case)

Special holding registers

Some holding registers can be written to without triggering the “REMOTE
PROGRAMMING... PLEASE WAIT” screen (method 1) or without having to enter
Remote Programming Mode (method 2).

These registers are:

- 7373 (7372 base-0) Current Program (if the general setting “remote progr” is set
to “CN5 TCP”)

- 7372 (7371 base-0) Current Sequence (if the general setting “remote seq” is set to
“CN5 TCP”)

- 7380 (7379 base-0) Barcode

- 7790 (7789 base-0) Remote Programming Status (to enter and exit Remote

Programming Mode for method 2)

General implementation guidelines and tips

e Make sure your program can gracefully handle Modbus Exception Codes:

Exception | MODBUS name Comments
Code
01 lllegal Function | The function code is unknown by the server
Code
0z lllegal Data | Dependant on the request
Address
03 lllegal Data Value Dependant on the request
04 Server Failure The server failed during the execution
05 Acknowledge The server acceplted the service invocation but the
service requires a relatively long time to execute. The
server therefore returns only an acknowledgement of the
service invocation receipt.
06 Server Busy The server was unable to accept the MB Request PDU.
The client application has the responsibility of deciding if
and when to re-send the request.

e Exception code 6 “Server Busy” will be used by the KDU in the following

situations:

o Attempting to write to a holding register while the screwdriver motor
is running

o Attempting to write to a holding register while a user is navigating the
configurating menus on the KDU touch screen interface

e Take advantage of the following settings on the KDU controller:
o REMOTE PROG => CN5 TCP: enables switching program # via Modbus

without triggering/entering remote programming mode, and disables the
program change button on the KDU touch screen so your operators can’t
override the program selection

REMOTE SEQ => CN5 TCP: same as above, for sequence selection

LOCK IF CN5 NOT CONNECTED: locks the KDU controller and disables
the screwdriver if/when the Modbus TCP connection is not open. Use this
if you want the KDU controller to only be usable when your Modbus
Client is connected.

e Avoid opening and closing the TCP connection for every Modbus request, as
this will slow down your program substantially. Instead, open the TCP
connection on startup, leave it open indefinitely, and close/reopen only in case of
a disconnection event

e The KDU client can receive asynchronous Modbus requests and will process
them in the order in which they are received. However, the aggregate/average
request rate should not exceed 1 request every 5 (five) milliseconds or you may
accumulate requests faster than the KDU can process them and eventually the
KDU may drop the connection if too many requests are accumulated. When in
doubt, keep cyclical request rates at 10ms or longer, and/or use synchronous
requests

e When instantiating the Modbus TCP Client object, configure the TCP timeouts
to around 1 second. The default TCP timeouts on most PC and PLCs are tuned
for internet connections (15 to 30 seconds, or even worse, “infinite” timeout)
which will slow down your program in the event of a disconnection from the
KDU controller

e If cyclically reading multiple coils or multiple registers, read all values in a
single pass as opposed to issuing multiple read commands for a single value

Typical program loops

These are tips/guidelines meant to complement the code examples provided in this
packet.

To monitor for new screwdriving results

The KDU will only store the latest screwdriving result data on the input registers. This
means that if the registers are not polled frequently enough, a new result could
overwrite an older result before your program has had the opportunity to see it.
Fortunately, this is nearly impossible if the polling rate is kept reasonably fast, and the
special input register “New Result Available” address 295 (294 base-0) should make this
easy to implement.

For example:

Cyclically poll Input Register 295 (294 base-0) “New Result Available” every 50
milliseconds™.

The value of this register always resets to zero after every read. This means that you will
only see a value “1” once for each unique screwdriving result.

When the value returned is 1, it means there is new screwdriving result data ready on
the other Input Registers, and only at this point your program should proceed to read
the other input registers of interest.

Most likely your program will need to read multiple input register values. Use Modbus
function code 4 “Read Input Registers” with an address range that encompasses all the
values of interest to get everything in a single pass as opposed to issuing multiple reads
of each single register. If your registers of interest are not contiguous, it’s still
recommended to use a single pass read and ignore the unneeded values as opposed to
using multiple requests.

Because the maximum number of registers that can be read is 125 (Modbus protocol
limitation), it may not be possible to get all the values of interest in a single read, for
example if retrieving the torque-angle / torque-time graph data. In this case it is of
course necessary to issue multiple read requests to get all the data.

*in the case of extremely fast back-to-back results, for example when using sequence
auto-transition mode with very short rundowns, you can increase the polling frequency
to 10 milliseconds or any value in between. It is not recommended to poll faster than
this as it is unlikely to be necessary nor beneficial.

To remote-control the screwdriver

Alternate between cyclically checking for a new result (tightening finished) as per the
paragraph above, and cyclically writing the remote lever command via the REMOTE
LEVER coil address 33 (32 base-0).

The REMOTE LEVER coil must be cyclically written-to. If it is not written to for 0.5
seconds, the controller will behave as if the screwdriver lever was released (the motor
will stop and the “release lever error” will be raised if said error is enabled in the
program parameters).

When the new result is detected, after reading the result registers of interest, you can
write “0” (zero) to the REMOTE LEVER coil to re-enable the REMOTE LEVER coil for
the next tightening. Alternatively, you can wait at least 0.5 seconds from the last time
the REMOTE LEVER coil was written, to re-enable it, as per the same release-lever
mechanism described above.

KOLVER

e cagy aolatie

MODBUS TCP code examples and literature

We provide sample projects illustrating K-DUCER screwdriver control built by Kolver
for various devices, as well as generic MODBUS TCP guides and literature produced by
the manufacturers of these devices.

We also recommend searching youtube for a multitude of freely available videos
illustrating how to implement MODBUS TCP communication with various control
systems.

PC (multiplatform) with Python, C#, and PowerShell

If you are using C# please refer to:
https://kolver.com/us/blog-detail/kolver-s-new-nuget-net-library and

https://www.nuget.org/packages/Kolver.Kducer

Included with the packet are the following scripts:

KDUCER_modbus_obtain_screwdriving_results_python.py
KDUCER_modbus_obtain_screwdriving_results_PowerShell.ps
o This stand-alone PowerShell script requires no external libraries and
allows you to save the tightening result from one K-Ducer controller. Run
multiple instances of this script to connect to multiple K-Ducers.
KDUCER _reprogram_via_modbus_python.py
o This script illustrates how to modify various program parameters on the

K-Ducer via modbus
KDUCER_modbus_remote_screwdriving_control_example_python.py
o This script illustrates remote actuation and control of the screwdriver. It
follows the same steps and logic outlined in the section below “example

screwdriving cycle”.

Siemens PLCs

Please refer to:
https://kolver.com/us/blog-detail/siemens-s7-plc-integration-now-available
https://kolver.com/upl/Siemens%20S7%20library %20and %20example.zip

This library has been developed and tested by Kolver for use with S7 series PLCs.

https://kolver.com/us/blog-detail/kolver-s-new-nuget-net-library
https://www.nuget.org/packages/Kolver.Kducer
https://kolver.com/us/blog-detail/siemens-s7-plc-integration-now-available

Allen Bradley PLCs

We provide an example project, KDUCER_modbus_example_Micro820, built and tested
for a Micro820 PLC using Connected Components Workbench.

The project illustrates K-DUCER screwdriver control and data retrieval and follows the
steps outlined in the section below “example screwdriving cycle”.

Additionally, the following Rockwell-produced application guides and libraries are
provided:

e 101037 Modbus TCP Add-On instructions for ControlLogix and CompactLogix
controllers, AOI Version 2.04.00
(https://www.rockwellautomation.com/resources/downloads/samplecode/101037
.exe)

e at002 AllenBradley EtherNetIP Socket Interface

More updated versions of these AOIs and guides may be found at
https://www.rockwellautomation.com/search/ by searching for “modbus tcp” (“sample
code” tab)

Universal Robots

We have a URCap: https://kolver.com/us/blog-detail/universal-robots-kolver-

introducing-our-new-urcap-plugin
https://kolver.com/upl/URCAP-KDUCER.zip

Example Screwdriving Cycle

The sample projects and programs provided by Kolver for integrating the K-DUCER
with the corresponding devices using MODBUS TCP all implement the screwdriving
cycle illustrated here.

WARNING: running any of the attached examples with a properly configured K-
DUCER will cause the screwdriver to run!

Do not run these examples if you are not familiarized with operating the screwdriver.
Use all appropriate precautions and read the K-DUCER operator manual first.

The screwdriving cycle implemented in the examples loops through the following
operations:

KOLVER

e cany aulatioe

https://www.rockwellautomation.com/search/
https://kolver.com/us/blog-detail/universal-robots-kolver-introducing-our-new-urcap-plugin
https://kolver.com/us/blog-detail/universal-robots-kolver-introducing-our-new-urcap-plugin

Step
number
1

What it does

Runs the screwdriver until
it stops automatically

Reads closing torque and
angle

Selects program #1 if the
screw result was OK,
program #2 if the screw
result was NOK

How it's done

Writes “high” to COIL address 33
(REMOTE_LEVER) continuously every 50-
100mS.

Reads INPUT REGISTER address 138 to obtain
the current screwdriving state and determine
when the cycle is complete

Reads INPUT REGISTER addresses 149 and
151 to obtain the closing torque and angles
Writes “1” or “2” to HOLDING REGISTER
address 7373 to select the next program to run.
Selection is determined by comparing the last
screwdriving state to values 13/14 (screw
OK/angle OK).

